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Abstract—Four technically and conceptually distinct experiments—a ran-
dom binary generator driven by a microelectronic noise diode; a determin-
istic pseudorandom generator; a large-scale random mechanical cascade;
and a digitized remote perception protocol—display strikingly similar pat-
temns of count deviations from their corresponding chance distributions.
Specifically, each conforms to a statistical linear regression of the form
An/n = 8(x — pn), where An/n is the deviation from chance expectation of
the population frequency of the score value x divided by its chance fre-
quency, g is the mean of the chance distribution, and § is the slope of the
regression line, constant for a given data subset, but parametrically depen-
dent on the experimental device, the particular operator or data concatena-
tion, and the prevailing secondary conditions. In each case, the result is
tantamount to a simple marginal transposition of the appropriate chance
Gaussian distribution to 2 new mean value ¢’ = g + Ne, where N is the
sample size, or equivalently to a change in the elemental probability of the
basic binary process to p’ = p + ¢, where p is the chance value and ¢ = &/4.
Proposition of a common psychophysical mechanism by which the con-
sciousness of the operator may achieve these elemental probability shifts is
thwarted by the complexity and disparity of the several technical and logical
tasks that would be involved. More parsimonious, albeit more radical, ex-
plication may be posed via a holistic information-theoretic approach,
wherein the consciousness adds some increment of information, in the tech-
nical sense, into the particular experimental system, which then deploys it
in the most efficient fashion to achieve the experimental goal, i.¢., the voli-
tion-correlated mean shift. The relationship of this technical information
transfer to the subjective teleological processes of the consciousness remains
to be understood. ‘

Introduction

Over the past twelve years, the Princeton Engineering Anomalies Research
(PEAR) program has accumulated very large data bases on a number of
human/machine experiments, including a variety of microelectronic ran-
dom and pseudorandom binary generators, a macroscopic random mechan-
ical cascade, and an assortment of analogue experiments using optical, me-
chanical, and fluid dynamical devices. For the most part, attention has been
focused on anomalous shifts of the mean values of the statistical output
distributions of these machines, compared to their calibration behavior and/
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or theoretical expectations, in correlation with prerecorded intentions of
their human operators. Full descriptions of the specific equipment utilized,
its qualification and calibration, the experimental protocols, safeguards
against spurious artifacts, data collection and processing techniques, the de-
tailed results, and their interpretation are available in many references
(Jahn, Dunne, & Nelson, 1987; Dunne, Nelson, & Jahn, 1988; Jahn &
Dunne, 1987; Nelson, Dunne, & Jahn, 1984, 1988a). In briefest summary,
the following hierarchy of effects has been established:

1. Systematic anomalous deviations of the output distribution means of
such devices can be replicably achieved by a large number of common hu-
man operators.

2. The scale of the anomalous effects are invariably quite small—tanta-
mount to a few bits per thousand displacement from chance expectation in
the binary machines—but over large data bases can compound to highly
significant statistical deviations.

3. The primary correlate of these deviations is the pre-stated intention of
the operator. Randomly interspersed accumulations of data taken under
three states of intention—to get higher values; to get lower values; to main-
tain the chance value--show clear and systematic separations from one an-
other and from the chance expectation.

4. The form and scale of these “tripolar” separations are identifiably oper-
ator-specific. Some operators achieve in both high and low intentions; some
in just one; some in neither; some regularly obtain shifts inverse to their
intentions; some even produce anomalous data under the null intention. But
these results are sufficiently characteristic of the individuals that they may
reasonably be termed operator “signatures.”

5. The dependence of the resuits on the particular machines employed is
less clear. Some operators seem to transfer their signatures across twWo or
more devices, others show substantial differences from one device to an-
other, but in most cases the scales of achievement are preserved.

6. Sensitivity of the effects to a variety of secondary technical parameters,
such as length or pace of the experiment, form of feedback, whether the
operator chooses the direction of effort or is instructed by a random selector,
etc., is also found to be quite operator-specific. Some operators’ perfor-
mances are profoundly affected by such options; others seem oblivious to
them.

7. Two operators attempting to influence the machine in a cooperative
fashion do not simply compound their signatures; rather, their joint results
tend to be distinctively characteristic of the particular pair.

8. These effects can be obtained by operators widely displaced from the
machines—up to distances of several thousand miles. In a number of cases,
the characteristics of a given operator’s “remote™ data closely concur with
his “proximate” data.

9. In some cases, remote effects can also be obtained when the operator’s
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effort is substantially displaced in time from the actual operation of the
machine.

10. Although little systematic correlation with psychological or physiologi-
cal indicators has been attempted in this laboratory, there appears to be little
dependence of individual operator achievement on personality, style, or
strategy. All of the over 100 operators so far employed in these studies have
been anonymous and uncompensated, and none has claimed extraordinary
abilities before or after the experiments. When their individual effect sizes are
arrayed in ascending order, the distribution covers a continuous range only
slightly displaced from chance (Dunne, Nelson, Dobyns, & Jahn, 1988).

Although most of the data treatment and interpretation of these experi-
ments has heretofore concentrated on the anomalous deviations of the out-
put means, some incidental attention has also been paid to the behavior of
higher moments of the experimental distributions—variance, skew, kurto-
sis, goodness-of-fit, and other more elaborate statistical criteria—in the hope
of illuminating some aspects of the physical, psychological, and epistemologi-
cal mechanisms of these phenomena. The ultimate assessment of this type,
however, must entail systematic examination of the complete distribution
profiles, at whatever incremental scale the particular experimental readout
permits. For our ensemble of random event generators, for example, based
as they are on binary combinatorials, the most natural incremental units are
simply the integer count reports that distribute about the sample mean, e.g.,
for 200-sample binaries, the populations of counts . . . 98, 99, 100, 101, 102
..., etc. From such detailed distributions one may then determine whether
the shift of the mean is driven by an excess or deficiency of nearby counts,
counts in the tails, counts near the standard deviation, or by some regularly
distributed pattern of differences or by a totally random array. One may also
inquire whether individual operators invoke identifiably different count pat-
terns for their achievements, and how replicably so, thereby supplementing
their cumulative deviation mean signatures in characterizing their individ-
ual effects.

Unfortunately, given the highly stochastic nature of the process, the
marginal scale of the anomalous effects, and the number of parameters that
can influence operator performance, monumental amounts of data must be
accumulated before any credible systematic trends in the individual count
populations can be identified, and it is only relatively recently that our total
data base has reached adequate dimensions to support such an effort. To
date, the microelectronic random event generator (REG) ensemble of ex-
periments has compounded to some six million trials, encompassing 108
operators, three machines, and three major protocol variations. From this
reservoir, 2 number of sufficiently large and self-consistent data subsets may
now be extracted, including some individual sets for a few of our more
prolific operators, that can reasonably be submitted to this count distribu-
tion analysis.
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Count Population Profiles in REG Experiments

The theoretically expected count distribution for any random binary gen-
erator trial follows from the Bernoulli binomial combinatorial

N
n(x) = ( )p"(l ~-p)M= (1)
X

where n(x) is the frequency of count x, N is the number of binary samples
per trial, and p is the elemental binary probability of each sample. For all of
the experiments described here, N = 200, and all machines are designed to
provide p = 0.5. The corresponding binomial distribution is very well ap-
proximated by the Gaussian function

n(x) = g 1/2u ) (2)

270
with mean g = Np = 100 and standard deviation ¢ = [Np(1 ~ p)]'/?
= 7.0707. . . . All calibration data conform appropriately to these theoreti-

cal expectations, within an empirical uncertainty on p of 5 X 10~* (Nelson,
Bradish, & Dobyns, 1989).

For virtually all composite or individual operator data subsets for which
statistically significant anomalous deviations of the mean are found, the
corresponding count distributions appear, well within the inherent experi-
mental noise, to retain essentially Gaussian profiles, albeit centered about a
displaced mean g’ = 100 + Ay, where Au is characteristic of the particular
subset, the intended direction of effort, and an assortment of prevailing sec-
ondary parameters. The essential question we wish to examine here is
whether the detailed forms of these translated distributions can provide any
insight into the basic nature of the anomalous phenomenon.

Given the tiny scale of Ay, it is best to deal in terms of the differential
count frequencies between the displaced distributions n’(x) achieved by the
operators, and the chance distribution, n(x) i.e., Arn(x) = n'(x) — n(x).
Figure 1 shows sets of such An(x) profiles for an overall REG data base of
some 3.8 million trials performed by 92 operators over a period of eleven
years under the tripolar intentions of high, low, and null, compared to an
appropriate set of calibration data. In this case, the null intention and calibra-
tion deviations are found to conform very well to statistical chance expecta-
tion, as evidenced by the essentially random alternation of positive and nega-
tive values, and by the small number that exceed the two-tailed .05 confi-
dence envelopes sketched on the graphs. The high and low intention data, in
contrast, show clear distributions of imbalance consonant with the total
mean shifts for these subsets. From these displays it is evident that the mean
shifts are being broadly supported by a preponderance of the individual
count deviations, rather than by more localized excesses or deficiencies in
the tails or elsewhere.
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Fig. 1a. Count frequency deviations. All diode REG: high, low.

Figure 2 shows the patterns of count frequency deviations for a single
operator’s contribution to this same data set. Although these distributions
are considerably noisier because of the smaller data base size, similar first
conclusions may be drawn. From a full array of such graphs for all individual
operator contributions to this and all other REG data subsets, it may be quite
generally concluded that significant anomalous displacements of the mean
are almost invariably broadly distributed across the corresponding count
distributions, rather than appearing as more localized departures from
chance expectations.

Temptations to search for yet more subtle features in these differential
count patterns are largely deterred by the inherent statistical noise which
even for these very large data sets tends to obscure any secondary regulari-
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ties. It is possible, however, to take another analytical step that may help to
illuminate the basic nature of the process underlying these anomalies.
Namely, if the count data are re-plotted as proportional deviations, i.e., as
the differences between the operator-generated distributions and the chance
distribution, normalized by the latter, (An/n values in x,) a particularly
simple functional relationship tends to emerge in most cases. The data of
Figure 1 are regraphed in this form in Figure 3. (Counts below 85 and above
115 have now been excluded because their populations are too small to
provide stable estimates.) Despite their large stochastic swings, each of these
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Fig. 1b. Count frequency deviations. All diode REG: baseline, calibration.

patterns can be statistically well fit by a linear regression of the form

2 b - )
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Fig. 2. Count frequency deviations. Diode REG: Operator 010.

i.e., by a straight line through the mean count, with characteristic slope 4. (In
these and subsequent figures, Z, is the z-score denoting the significance of
the linear term in the regression; Z, denotes the improvement that would be
made by retaining a quadratic term. Other details of the regression calcula-
tion are presented in the Appendix.) As shown in Figure 4, this form also
obtains at the level of the individual operator data of Figure 2, and has been
confirmed over many other composite and individual data sets not shown
here. In virtually all cases, the linear fit is statistically sufficient; the qua-
dratic, cubic, and higher terms are usually not needed.

This striking result is most parsimoniously consistent with the hypothesis
that the displaced distribution is still Gaussian, but with its elemental binary
probability, p = 0.5, somehow altered to a new value, p’ = 0.5 + ¢, where the
size.of ¢ is characteristic of the subset or individual operator. This can be seen
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Fig. 3a. Proportional frequency deviations. All diode REG: high, low.

most directly by partial differentiation of the Gaussian function with respect
to the mean value, u, holding x constant as parameter:

Sl
Inserting
Ap =y’ — p = N(p+ €) — Np = 200¢ (5)
and

2= Np(1 —p)=50 (6)
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yields
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22 = 5(x — ) = de(x — 100)
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(7)

In other words, a single incremental distortion of the elemental binary proba-
bility, commensurate with the overall mean shift of the Gaussian, manifests
as the observed linear displacements of An/n.

This does not, of course, imply that each count deviation contributes
equally to the overall shift of the distribution mean. For this assessment one
requires the first moment of the deviations about the mean, which we might
term the leverage distribution, L(x) = An(x — u). Empirically, this distribu-
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Fig. 4. Proportional frequency deviations. Diode REG: Operator 010.

tion is found to reach a maximum at a count somewhat outside of the first
standard deviation. A theoretical leverage distribution can be computed
from the linear fit of Eq. (7) and the Gaussian 7(x) approximation (2).

L(x) = 4en(x — p)? = Ce™V2=woP . (x — p)? €))

where C subsumes both the constant coefficients and the bias parameter, e.
For our values of ¢ and ¢, this function has maxima at (x — u) = £} 20, i.e., at
the counts 110 and 90, consistent with the experimental distributions
sketched in Figures 5 and 6 for the overall diode data base and the single
operator, respectively.

It is tempting to leap from the generic result of relations (3) and (7) to
speculate on possible modes of interaction of the consciousness of the hu-
man operator with the REG noise source, whereby the elemental probability
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Fig. 5. Count leverage on mean shift. All diode REG: high, low.

of the microelectronic processes occurring therein might be altered by the
indicated amounts. It should first be noted, however, that considerable elec-
tronic processing is applied to the output of the primary noise diode prior to
the bit-counting stage, including the imposition of an alternating template
that compares the raw random bit string with a regularly alternating criterion
(+, —, +, —, +, —) and counts the coincidences of sign. It is these coincident
count distributions that constitute the experimental data and are used as
feedback for the operators. While this strategy has the powerful technical
advantage of eliminating any possible influence of remanent DC bias that
might escape the extensive voltage regulation failsafe system, it considerably
complicates and delimits the modalities by which the operators’ influence
may be imposed. In particular, introduction of a simple systematic bias in
the raw noise pattern or the primary bit string will not avail. Rather, the
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Fig. 6. Count leverage on mean shift. Diode REG, Operator 010.

effect must be exercised much further along in the preparation of the output
count sequence.

This complexity of interaction is underscored by similar treatment of re-
sults from “pseudorandom™ versions of the REG experiments. Early in the
REG program, in an effort to assess the sensitivity of the observed effects to
the specific nature of the noise source, a number of other microelectronic
sources were developed, among them a hard-wired array of shift registers
that produces a deterministic string of pseudorandom digits (Jahn, Dunne,
& Nelson, 1987; Nelson, Dunne, & Jahn, 1984 ). This continuously running
string, which repeats itself every thirty hours, can replace the diode random
source in the composite REG circuit box by a flip of an external switch,
leaving all other functions of the experiment, including its feedback and data
" processing, identical. Overall results using this pseudorandom version, in
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terms of intention-correlated, operator-specific shifts of the mean, are essen-
tially the same as with the electronic diode noise sources.

Since the only evident mode of operator influence on the output distribu-
tions of such a deterministic device is via the points of incursion into the bit
string, examination of the count population patterns should be particularly
interesting. Figure 7 shows An/n for the entire pseudorandom data base of
some 700,000 trials. (No individual operator has yet generated sufficient
data on this device to support this analytical treatment.) Note once again the
linear fits of magnitude consistent with the overall mean shifts. Clearly, if we
are to retain the image of an induced bias in the underlying elemental proba-
bility, its mode of attainment must be extremely subtle. This point will be
further illustrated in the context of the more substantially different experi-
ments discussed in the next section.

0.06 Z1= 1844 HI
Z2= 0478

AhUn

85 90 o5 100 105 110 115
0.06 21 =-2.969 Lo
22 =-0.738
0.04 |
002 | j‘
£ oo 00l 01
: IR
0.02 +
-0.04
0.06 |
85 90 a5 100 105 110 115
Count Number

Fig. 7. Proportional frequency deviations. All pseudo-REG.
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Bin Populations in 2 Random Mechanical Cascade Experiment

REG experiments like those described above have served as the bench-
mark studies of the PEAR program since its inception. From these have
radiated a number of ancillary experiments designed to explore systemati-
cally the dependence of the anomalous phenomena on various technical,
aesthetic, and procedural parameters, such as the scale of the machine, its
physical domain, the character of its feedback, the quality of its randomicity,
etc. Of these, the most extensively developed and deployed counterpart to
the microelectronic REGs has been a room-size “Random Mechanical Cas-
cade” (RMC) apparatus, shown in Figure 8a, wherein 9000 polystyrene
spheres are allowed to trickle downward through an array of 330 nylon pegs
to distribute themselves among 19 collecting bins lined across the bottom of
the device. Photodetectors track the entrance of each ball into each bin and
appropriate computational programs record and display on line the growing
bin populations, followed by the terminal distribution properties.

i

Fig. 8a. Random Mechanical Cascade Apparatus.
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The detailed mechanics of the ball trajectories through the peg maze are
much too complex to permit calculation of a theoretical bin population
distribution, but when properly aligned, the machine yields calibration dis-
tributions sufficiently close to Gaussian to allow analysis by conventional
parametric statistics (Figure 8b). Even so, various environmental vagaries,
most notably hydroscopic changes in ball and peg resilience and long term
ball and peg wear, preclude comparison of active experimental distributions
with any fixed reference. Rather, data are invariably taken and processed on
a tripolar differential basis wherein operator efforts to shift the distribution
to the right or to the left, or to take an undisturbed null, are compared locally
with one another.

Further details on the design, operation, and calibration of this machine,
and full presentations of the large bodies of operator-specific and composite
data, are available in the references (Nelson, Dunne, & Jahn, 1988a). Most
briefly, anomalous effects quite comparable in scale and character to those
obtained on the REG devices are found in these RMC experiments. In fact,
the entire hierarchical list of salient effects sketched in the Introduction
would apply equally well to this macroscopic mechanical facility. Of primary
interest here, however, are the interior details of the terminal output dis-
tributions.

By its design and by its inherent statistical leverage, the RMC is even better
disposed than the REGs to display of incremental count distributions,
namely via the individual bin populations themselves. Indeed, although the
absolute number of experimental runs of this machine are substantially
smaller than for the REGs, there are fewer bins than REG counts, and the
bin population data are actually somewhat less stochastic and easier to pro-
cess. Figures 9 and 10, for example, show the mean differences in bin popula-
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Fig. 8b. RMC baseline mean bin totals on theoretical Gaussian.
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Fig. 9. Mean bin population differences. All RMC.

tions for right versus left efforts for the entire RMC data base presented in
Dungne, Nelson, and Jahn (1988) and Nelson, Dunne, and Jahn (1988a),
and for the same individual operator, respectively. Note once again that a
large number of the bins contribute substantially to the overall mean shift,
rather than leaving the burden to any particular few.

As before, it is instructive to display these population decrementsin An/n
form, where the reference » here is the average of the right and left effort
populations for the corresponding bins. The results, like those shown in
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Fig. 10. Mean bin population differences. RMC, Operator 010.
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Figures 11 and 12 and for many other subsets not shown, again lend them-
selves to a simple linear regression of the form

i‘n-’-’ = 5(B - 10) 9)

where B is the bin number from extreme left to extreme right (10 is the
center bin) and 4 is the slope of the fit. ( The significant quadratic correction,
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Fig. 12. Mean proportional bin population differences. RMC, Operator 010.
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Z, = —2.214, in Figure 11, is attributable to the spurious effect of the RMC
sidewalls, which tend to distort the end bin populations somewhat. If the
calculations are repeated with bins number 1 and 19 excluded, Z, drops to
—0.754; if 2 and 18 are also excluded, Z, becomes 0.132. In both cases the
value of Z, and é remain nearly the same.)

The conformance of a large body of data on this macroscopical mechani-
cal RMC device to the same form of linear An/n relationship found for the
microelectronic and pseudo REG results must have important implications
for comprehension of the generic anomaly at work in these vastly disparate
systems. In the previous section we commented on the technical complexity
of the task facing the operator in attempting to impose his characteristic
increment, ¢, on the basic binary probability, p, to achieve the observed
output results in the microelectronic and pseudorandom REGs. To this we
now must add the yet more imposing complexity of the RMC system, where
the elemental probability is deeply buried in a host of technical features, such
as the ball inlet conditions, the configuration and resilience of the scattering
pegs, and the high unpredictability of the ball/ball collisions that supple-
ment the ball / peg interactions. Indeed, although we have on occasion made
some attempts to interpret the observed bin population distributions of this
machine in terms of a “Quasi-binary” combinatorial, it is quite clear that the
basic scattering events span wide ranges of elemental probability, and com-
pound in a highly hierarchical and non-linear fashion, so that the resem-
blance of the output distributions to the Gaussian must be far more fortui-
tous than fundamental. In this light, the similarity of the observed bin popu-
lation deviation patterns to those of the REGs becomes even more
remarkable than simply the scale and genre differences of these classes of
machine would suggest. In fact, it makes any common mechanistic interpre-
tation so implausible as to require a more paradigmatic resolution.

Application to Remote Perception Data

The ubiquitous appearance of the count population patterns uncovered in
the various human /machine experiments outlined above and the imphica-
tions thereof for the basic mechanisms involved can be projected even fur-
ther by one final example drawn from a substantially different sector of our
research program. For over twelve years, this laboratory has also carried
forth a coordinated experimental and theoretical component concerned
with the acquisition, evaluation, and interpretation of data in a variety of
protocols subsumed under the nomen of “Precognitive Remote Perception™
(PRP)—the acquisition of information about physical target scenes, remote
in both space and time, by common human percipients, using other than
normal sensory processes. The primary focus of this effort has been the
development of analytical judging techniques to quantify the anomalous
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information contained in the several hundred formal target perceptions ac-
quired in these experiments. These analytical strategies, fully described in a
sequence of publications (Jahn, Dunne, & Jahn, 1980; Dunne, Jahn, &
Nelson, 1983; Jahn et al., 1982; Dunne, Dobyns, & Intner, 1989), ultimately
yield distributions of perception scores that can be compared with empirical
chance distributions for the same scoring methods. Such pairs of score distri-
butions are found to correspond closely enough to Gaussian forms to allow
parametric statistical evaluation of the mean shifts and higher moments,
much like that applied to the REG and RMC data. Despite the much smaller
size of the PRP data base, the statistical significance of the mean shifts of the
score distributions are considerably greater than for the human/machine
experiments, with probabilities against chance ranging from 1075 to 1072,
depending on the particular data subset and scoring method.

If the PRP experimental and chance score distributions are binned into
discrete increments, they may be subjected to the same An and An/n analy-
ses used for the REG and RMC data. Figures 13 and 14 show the results of
such treatment of 277 formal PRP trials, ab initio encoded, employing a
global target pool and both instructed and volitional protocols (Dunne,
Dobyns, & Intner, 1989). The similarities of form to the human /machine
data are unmistakable; the interpretation, however, is even more obscure.

All of the PRP scoring methods are based on an array of thirty binary
descriptors ranging from very factual to very impressionistic details, such as
whether the scene is outdoors, whether it is noisy, whether people are pres-
ent, etc., that are answered by the percipients after dictating their free re-
sponse narratives. Each of these descriptors has a particular frequency of
occurrence across the target pool of all scenes in a given data set. The percip-
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Fig. 14. PRP proportional score frequency differences. All ab initio data.

ient’s response to each descriptor is compared to the proper statement for the
given target, and that result is weighted in terms of the descriptor frequency.
Thus, the linear An/n pattern of Figure 14 is equivalent to a uniform slight
improvement in the statistical likelihood of the percipients’ proper identifi-
cation of the target descriptors, beyond their normal chance occurrence
across the utilized target pool. Mechanistically, this seems far removed from
the alteration of bit probabilities in an REG, or from the systematic marginal
migration of balls in an RMC, yet the An/r pattern simijlarities among them
are unmistakable.

Summary

The tantalizingly similar simple patterns of the count deviations in these
four disparate experiments, tantamount in each case to marginal transposi-
tion of the chance Gaussian distributions consistent with incremental
changes in their elemental binary probabilities, begs for some correspond-
ingly simple common hypothesis for the attainment of these several empiri-
cal anomalies. Yet, the individual complexity and collective differences in
the interior technical processes involved quickly render any such hypotheti-
cal mechanisms extremely convoluted at best, suggesting that a more generic
and holistic approach, even if more radical in its paradigmatic implications,
may ultimately be more productive. With no pretense of empirical verifica-
tion or theoretical uniqueness, the remaining paragraphs offer one such possi-
. ble representation.



Count population profiles 225

In a strictly technical sense, the only difference between the chance expec-
tations of the various experimental outputs and their demonstrated anoma-
lous results is a matter of information. In each case, the anticipated random
array of output digits, bin populations, or target descriptor scores has been
shightly ordered, thereby decreasing its overall entropy, and raising its overall
information content. Since the only empirically demonstrated primary corre-
late of this achievement is the pre-stated intention of the human operator, it
is reasonable to assume that the source of this information increment is the
consciousness of that operator. Whether the process is regarded as a direct
transfer of information from the operator’s consciousness to the machine’s
“consciousness,” or as an internal rearrangement of the total information
content of the bonded operator/machine system—although a philosophi-
cally intriguing distinction in its own right—is not of primary relevance here.
Rather, the essential feature is that the particular output pattern now finds
itself obliged to assimilate this increment of information.

In simplistic terms, the pattern has two options: it may retain a Gaussian
distribution, displaced by the requisite amount to accommodate the full
information increment solely within its mean shift; or, it may distribute
some or all of the information into an internal rearrangement of the count
distribution, e.g., by changing its variance, developing a skew or kurtosis, or
forming a more pathological pattern. In opting for the former reaction, as
our empirical results indicate, the added information is utilized in the most
efficient fashion to fulfill the stated teleological task of the operator, in this
case to shift the mean score, squandering none of it in unproductive internal
distortions of the distribution. This option, which seems to be commonly
elected in all of the various experiments described, thus takes the form of a
“minimum information™ principle, with the consciousness of the operator
somehow specifying the nature of the experimental goal, and the output
pattern deploying the minimum information necessary to achieve it.

A critical test of this hypothesis would be for the operators to address tasks
other than shifts of the mean in otherwise similar experimental protocols,
e.g., 10 attempt to change the distribution variance, to0 develop asymmetries,
or to overpopulate particular counts, to see whether the systems respond in
similarly efficient modes to fulfill these volitions. Unfortunately, given the
huge data bases that would be needed to substantiate such statistical pat-
terns, we are a long way from being able to validate the model in this more
general form. The only relevant evidence in hand is from two operators who,
in relatively small data sets, succeeded in significantly altering REG distribu-
tion variances, without substantially affecting the mean or other moments,
and from a third who achieved similar effects on the RMC. One other opera-
tor has had minor success in over-populating particular preselected RMC
bins. Many more data of this sort are clearly required.

Any information transfer model for the observed phenomena inevitably
entails energy transfer considerations as well, on purely physical grounds. Of
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the three recognized currencies of the physical world—substantial matter
(mass), energy, and information—the relationship between the first two has
been unequivocally established via Einstein’s monumental equation and has
dominated much of twentieth century physical science. The relationship
between energy and information has been less incisively formulated and less
extensively exploited, although models and empirical examples exist in
many physical sectors, notably the Second Law of Thermodynamics; the
quantum mechanical exchange energy of covalent molecular bonds; various
electromagnetic resonance and coherence situations such as lasers and
masers; and, of course, fundamental information theory 4 Ia Shannon and its
many derivatives. The classical separation of these three physical currencies
over most of scientific history is attributable to the huge size of the transmu-
tation coefficients that relate mass to energy, and energy to information,
respectively.

In our experimental situation, the inversion of a small fraction of the
information bits from their chance configurations or, equivalently, the shift
in the apparent elemental probabilities, also has energetic as well as informa-
tive implications, although the former are of miniscule scale, again given the
magnitude of the transmutation coefficient. Nonetheless, what is of over-
arching interest here is the possibility that the consciousness of the operator,
using that capacity for which it is most extraordinarily equipped—the pro-
cessing of information—has in these interactions entered proactively into
the affairs of the physical world, rearranging not only a portion of its infor-
mation array, but thereby accessing its energy, and thence, by inference, its
very substance. Extrapolating to more general implications, this model
would thus suggest that the third side of the mass-energy-information trian-
gle of physical currencies can provide a natural entry for human conscious-
ness to participate in the construction of tangible reality, if we can but com-
prehend the dynamics of transfer of the subjective information of the mind
to the technical information of the cosmos.

References

Dunne, B. J,, Dobyns, Y. H., & Intner, S. M. (1989). Precognitive Remote Perception III:
Complete Binary Data Base with Analytical Refinements ( Technical Note PEAR 89002).
Princeton Engineering Anomalies Research, Princeton University, School of Engineering/
Applied Science.

Dunne, B. J., Jahn, R. G., & Nelson, R. D. (1983). Precognitive Remote Perception ( Technical
Note PEAR 83003). Princeton Engineering Anomalies Research, Princeton University,
School of Engineering/Applied Science.

Dunne, B. J., Neison, R. D., & Jahn, R. G. (1988). Operator-related anomalies in 2 random
mechanical cascade. Journal of Scientific Exploration, 2, 155-179.

Dunne, B. J., Nelson, R. D., Dobyns, Y. H., & Jahn, R. G. (1988). Individual Operator Contri~
butions in Large Data Base Anomalies Experiments ( Technical Note PEAR 88002). Prince-~
ton Engineering Anomalies Research, Princeton University, School of Engineering/ Applied
Science.



Count population profiles 227

Jahn, R. G., & Dunne, B. J. (1987). Margins of reality. San Diego, New York, London: Har-
court Brace Jovanovich.

Jahn, R. G., Dunne, B. J., & Jahn, E. G. (1980). Analytical judging procedure for remote
perception experiments. Journal of Parapsychology, 44, 207-231.

Jahn, R. G, Dunne, B. J., & Nelson, R. D. (1987). Engineering anomalies research. Journai of
Sczenzzﬁc Explorazzon 1, 21-50.

Jahn, R. G., Dunne, B. J., Nelson, R. D., Jahn, E. G, Curtis, T. A., & Cook, L. A. (1982).
Analytiml Judging Procedure for Remote Perception Experiments II: Ternary Coding and
Generalized Descriptors. ( Technical Note PEAR 82002). Princeton Engineering Anomalies
Research, Princeton University, School of Engineering/ Applied Science.

Neison, R. D., Bradish, G. J., & Dobyns. Y. H. (1989). Random Event Generator: Qualifica-
tion, Calibration and Anaivsis (Technical Note PEAR 89001). Princeton Engineering
Anomalies Research, Princeton University, School of Engineering/ Applied Science.

Nelson, R. D., Dunne, B. J., & Jahn, R. G. (1984). An REG Experiment with Large Data Base
Capability ITI: Operator Related Anomalies( Technical Note PEAR 84003 ). Princeton Engi-
neering Anomalies Research, Princeton University, School of Engineering / Applied Science.

Nelson, R. D., Dunne, B. J., & Jahn, R. G. (1988a). Operator Related Anomalies in 2 Random
Mechanical Cascade Experiment ( Technical Note PEAR 88001), and (1988b). Operator
Related Anomalies in a Mechanical Cascade Experiment, Supplement: Individual Operator
Series and Concatenations ( Technical Note PEAR 88001.S ). Princeton Engineering Anoma-
lies Research, Princeton University, School of Engineering/ Applied Science.

Appendix
Error-Weighted Linear Regression

All of the data consist of many observations of a dependent variable y;,
each associated with an independent variable value x; and involving a mea-
surement uncertainty o;. A linear model assumes that the data are of the
form

Vi=BotBixi + ¢, (n

where ¢; 1s an error term with mean zero. In an unweighted regression it is
usually assumed that the error terms are all drawn from a common distribu-
tion, whereas for the weighted regression employed here the ¢; are presumed
to have variance ¢?. It is further assumed that the various ¢; are independent.
The goal of a regression analysis is to construct sample estimates b, of 8, and
b, of B,.

A least-squares approach that minimizes the total, normalized squared
€IToT,

(2)

E=S (bo+ b, x; "‘}’i)z .

O;

seems a natural choice in that it gives the error term a x2 functional form
when the ¢; are normal, and includes the unweighted regression form as a
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special case. This total error may be minimized by finding zeroes of its
partial derivatives,

OE  2(b+ by X — i) _

b, B Zz: 0? =0

SE _ > 2(bo + byx; — yi)xi _ 0 )
b, % o? e

On simplification, Egs. (3) become a set of linear equations in two un-
knowns,

(32 (2 (22

(350 (322

i O i Oi i O

which may readily be solved for b, and b,, yielding
: i X i Vi
22)(z2)-(=2)%)
YRS A%
(=2E%)-3)
. (5)
X; Vi X; i
_a)EE)-EaEs
(2= E) - (2 E)
(=2%)-(3)

Note that both b, and b, are /inear combinations of the y;, so that

b0=

by = 2 koy; and b= 2 ki yi, (6)
where
(z —"-;i)l/a% - (2 -’%)x,/af
ko = i G’il — i i - (7
z3)(25)- (23
and
(2 %)x;/a? - (2 f—;)l/af
1 1 1 1 (8)
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These k coefficients have the addition properties: 2 ko; = 1, 2 ko; x; =0,
2 ky; =0,and T ky; x; = 1, from which it follows that the expectation values
of &y, b, are indeed the model parameters S,, 8;:

Elbo) = E[Z ke:y:] = E1Z koi(Bo + BiX; + )]
=B 2 koi +B1 2 koix; + 2 koi El¢;] (9)
=BO,

where the last equality follows from the addition properties of k,; and the
fact that Efe;] = O for all i, by definition. A parallel derivation with the k;;
shows that E{b,] = 8,.

In order to establish confidence intervals for the model parameters, it is
also necessary to know their variances. Using o[ x] to denote the variance of
a formula x, we note from the rules for variances of linear combinations that

o’lbo] = [ 2 kaivi]l = T k&o?[¥:]- (10)

But, by the assumptions of the model, ¢3[y;] = 0%[¢; ] = o2. Therefore o[ b,]
= 3 (ko;0;)* and, by a similar derivation, ¢?[5,] = 2 (k;;0;)%. This allows
confidence intervals on b, and b, to be established.

In addition to inferences regarding the individual parameters, it is also
often desirable to form joint inferences about the regression line that results
from combining them. The hyperbolic confidence band that results from
such calculations is an envelope about the regression line such that, with the
stated likelihood, the actual model line Y = B, + B,x lies entirely within the
envelope. Esmbhshmg the confidence band requires calculation of the model
prediction variance ¢%[ ¥] where Y = b, + b, x is the predicted value of the
regression line at a given point x. The may be computed as

6*(¥] = o2 bo + byx]
=62 kauyi + 2 kuyix]
= 63 (ko + by X)¥i] (11)
= 2 (ko + ky;x)*0*[y;]
= 2 (ki + 2Kkoiky x + kfix?*)e?

where the intermediate expansion is needed because, while the variances
of b, and b, are known, they are not independent. Given a formula
for o2 the locations of the confidence band limits are ¥
+ Y2F[1 — ; 2, n — 2]6[ Y] where 7 is the number of data points and
F[l —; 2, n— 2] isthe 1 — a quantile of the F distribution for 2 and n — 2
degrees of freedom. In other words, it is the number such that an F distribu-
tion with 2 d.f. in the numerator and (n — 2) d.f. in the denominator hasa
probability a of producing a larger value (Neter & Wasserman, 1974).

An important concern of any linear regression model is whether it leaves
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some non-random component of the data unaccounted for. The simplest
way to test this is by examination of the residuals after the regression line
prediction is subtracted from the data. A rescaling of the x axis values to x2,
x* or any other suspected contributing term can then be performed, and the
resulting data fitted with a new regression line to be examined for significant
slope. The absence of such a slope does not totally guarantee that the contrib-
uting term is not present, but only that the data are insufficient to resolve it if
1t is.

Regression Line and Mean Shift

As demonstrated in the body of the text, if the theoretical frequency for the
ith count value is denoted by 7, ; the empirical frequency is #;; the deviation
of the ith count from the theoretical mean is x; ; and the elementary success
probability is 0.5 + 4, then

L kR YT (12)

n; n;

is the expected proportional shift in the population of the ith count value.
Two other quantities that are useful for this discussion are P;, the actual
population of the ith count in a given dataset, and ¢;, the theoretical popula-
tion expected in a dataset of N trials. Note that P, = Nn;,¢; = Nn;,and 2 ¢;
= ¥ P, = Nall hold as identities from their respective definitions. Alterna-
tively 2 P; = N may be regarded as the definition of N.

To consider this in the context of the regression analysis above, we may
identify y; = (P; — t;)/t; with the proportional shift in population for each
count value. We then note that under the null hypothesis P; is random with
expectation ¢; and standard deviation VZ Since o; are the standard devia-
tions of y, for the regression analysis, ¢; = 1/ VZ follows.

The mean shift is clearly coupled to the individual count totals. The mean
shift m — p of a given population is the total deviation from the expected
value, divided by the total population, that is,

S ZPz‘xx‘= Z Px;
¥ N -
From the definitions above, however, P; = y;z; + t;. Since the x; are defined
as deviations from the mean value, and the 7; are always symmetrically

distributed about the mean value, the term 2 X;¢; vanishes identically, so
that

(13)

Z yitix;
m—#=—zr=2nixi%- (14)

The & value that corresponds to this mean shift is calculated as follows: for p
.= 0.5, u is the expected number of hits in however many binaries are gath-
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ered to form one trial; therefore the number of binaries in question is 2u. The
probability of a hit in one binary is m/2u, where m is the empirical trial
mean, so that

m-pu
P (15)

6=p—-05=(m/2u)-05=

Combining (14) and (15), we obtain § = (1/2x) 2 n;x;y;, which may be
used in the right hand side of (12) to compute the predicted proportional
shift Y; for each count value:

.2
Y; =;(Z X V)X (16)

Now let us consider the linear regression fit that is computed for x; , y;, and
¢; asdefined above. First, since the bin probabilities are symmetric about the
theoretical mean, and x; is by definition the deviation from that mean,
2 x;/62 = 2 x;t; = 0. This simplifies the formulas (5) for the regression
coefficients to

b = 2 z,'.x,; 2 LY
o Z L 2 t;xf 17
b = Z I 2 LX; Vi ( )
Y2z ux?

Notingthat 2 P; = 2 t; = Nand P, = y;i; + 1; are both required, we conclude
that T ¢; y; = 0; this is in essence a constraint equation on y; that follows from
the fact that the 7; are normalized to the actual population. Applying this
relation in (17) we see that b, now vanishes identically. The formula for b,
may be simplified by noting that T ¢; x? is N times the trial variance. Since
the number of binaries per trial is 2u, from the binomial formula the trial
standard deviation is Y2upg = Yu/2 for p = g = 0.5. Therefore the trial
variance is just u/2 and b, = 2 2, x;y;/N(#/2) = (2/1) Z n;x; ;. The regres-
sion line prediction for the ith bin is thus Y; = (2/x)(Z n;x;y;)x; which is
identical to Eq. 16. In other words, the regression line and the mean-shift
prediction line are identical, unless the set of counts is incomplete, so that
count-conservation conditions such as T P; = 2 {; are not perfectly obeyed.
This latter situation actually arises in many cases, including those covered by
this paper, whenever extreme count values, i.e., those in the tails of the
distributions, are insufficiently populated to allow stable estimates, and must
be excluded.

One can also show that the regression line preserves the mean shift, or, to
paraphrase, that a hypothetical data set, whose count population all fali
exactly on the regression line obtained from an actual data set, bas exactly
the same mean shift as that data set. From ( 14) the mean shift produced by
the actual data is AM = 2 n;x; y; . The various symmetries and conservation
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conditions coerce the regression parameters to by = 0, b, = (2 n;X;y;)/
(2 n;x%). The predlcned Y values for the regression line are then Y,
= x,(Z n;x;3;)/(Z n;x?%). But formula ( 14) for the mean shift applies to any
set of y;, so the mean sh:ft for the hypothetical set ¥, can be calculated:

AM = 3 n;x;Y;
Z nxy;
= 2 mx (x, Zn,xz) 8
_ C nx}) 2 nixiyi) (18)
T nx?

=2 Xy
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